fibomat.layout.lattices.lattice module#

class fibomat.layout.lattices.lattice.Lattice(elements: List[Transformable], elements_by_uv: List[Transformable], description: str | None = None)[source]#

Bases: Group, LatticeBaseMixin

__init__(elements: List[Transformable], elements_by_uv: List[Transformable], description: str | None = None)[source]#
Args:

description (str, optional): description

classmethod generate_rect(nu: int, nv: int, du: float, dv: float, element: Transformable | Callable, center: Vector | Iterable[float] | None = None, predicate: Callable | List[Callable] | None = None, explode: bool = False, remove_outliers: bool = False)[source]#
classmethod generate(boundary: HollowArcSpline | ArcSplineCompatible, u: Vector | Iterable[float], v: Vector | Iterable[float], element: Transformable | Callable[[Tuple[float, float], Tuple[int, int]], Transformable | None], center: Vector | Iterable[float] | None = None, predicate: Callable | List[Callable] | None = None, explode: bool = False, remove_outliers: bool = False, seed: Vector | Iterable[float] | None = None)[source]#
property bounding_box: BBoxT#

BoundingBox: bounding box of transformable

Access:

get

property center: VectorT#

center of the (geometric) object

Access:

get

Returns:

Any

clone() T#

Create a deepcopy of the object.

Returns:

Describable

property description: str | None#

Description str.

Access:

get

Returns:

Optional[str]

property elements#
layout_elements() Iterator[ElementT]#

Access to the saved elements.

Yields:

Any: Type depends on saved element.

mirrored(mirror_plane: VectorT) SelfT#

Return a mirrored object mirrored about mirror_plane.

Args:

mirror_plane (VectorLike): mirror plane to be used.

Returns:

TransformableBase

property pivot: VectorT#

Origin of the (geometric) object. If origin is set to None, Transformable.center will be returned.

Pivot must be set to a callable function without parameters.

transformable_obj = ...
transformable_obj.pivot = lambda: return Vector(1, 2)
print(transformable_obj.pivot)  # will print Vector(1, 2)
Access:

get/set

Returns:

Vector

rotated(theta: float, origin: VectorT | str | None = None) SelfT#

Return a rotated copy around origin with angle theta in math. positive direction (counterclockwise).

Args:

theta (float): rotation angle in rad origin (Optional[Union[linalg.VectorLike, str]], optional):

origin of rotation. If not set, (0,0) is used as origin. If origin == ‘center’, the Transformable.center of the object will be used. The same applies for the case that origin == ‘origin’ with the Transformable.origin property. Default to None.

Returns:

TransformableBase

scaled(fac: float, origin: VectorT | str | None = None) SelfT#

Return a scale object homogeneously about origin with factor s.

Args:

fac (float): rotation angle in rad origin (Optional[Union[linalg.VectorLike, str]], optional):

origin of rotation. If not set, (0,0) is used as origin. If origin == ‘center’, the Transformable.center of the object will be used. The same applies for the case that origin == ‘origin’ with the Transformable.origin property. Default to None.

Returns:

TransformableBase

transformed(transformations: _TransformationBuilder[VectorT]) SelfT#
Return a transformed object. the transformation can be build by the following functions:
  • translate()

  • rotate()

  • scale()

  • mirror()

E.g.

transformable_obj.transform(translate([1, 2]) | rotate(np.pi/3) | mirror([3,4])
Args:

transformations (_TransformationBuilder): transformation

Returns:

TransformableBase

translated(trans_vec: VectorT) SelfT#

Return a translated copy of the object by trans_vec.

Args:

trans_vec (VectorLike): translation vector

Returns:

TransformableBase

translated_to(pos: VectorT) SelfT#

Return a translated copy of the object so that self.pivot == pos

Args:

pos: new position of object

Returns:

TransformableBase

with_changed_description(new_descr: str) T#

Clones the object and set the description to new_descr.

Args:

new_descr: new description

Returns:

Describable