fibomat.shapes.ellipse module#

Provides the Ellipse class.

class fibomat.shapes.ellipse.Ellipse(a: float, b: float, theta: float = 0, center: Vector | Iterable[float] | None = None, description: str | None = None)[source]#

Bases: Shape, ArcSplineCompatible

2-dim ellipse.

__init__(a: float, b: float, theta: float = 0, center: Vector | Iterable[float] | None = None, description: str | None = None)[source]#
Args:

a (float): length of half axis in pos. x-direction (unrotated) b (float): length of half axis in pos. y-direction (unrotated) theta (float): rotation angle, default to 0 center (VectorLike, optional): center of circle, default to (0, 0) description (str, optional): description

to_arc_spline() ArcSpline[source]#

Transform shape to ArcSpline.

Returns:

ArcSpline

property a: float#

Length of half axis in pos. x-direction (unrotated)

Access:

get

Returns:

float

property b: float#

Length of half axis in pos. y-direction (unrotated)

Access:

get

Returns:

float

property theta: float#

rotation angle of ellipse.

Access:

get

Returns:

float

property center: Vector#

center of the (geometric) object

Access:

get

Returns:

Any

property bounding_box: BoundingBox#

BoundingBox: bounding box of transformable

Access:

get

property is_closed: bool#

bool: True if shape is closes. This property should not be defined for 0-dim shapes

Access:

get

clone() T#

Create a deepcopy of the object.

Returns:

Describable

property description: str | None#

Description str.

Access:

get

Returns:

Optional[str]

mirrored(mirror_plane: VectorT) SelfT#

Return a mirrored object mirrored about mirror_plane.

Args:

mirror_plane (VectorLike): mirror plane to be used.

Returns:

TransformableBase

property pivot: VectorT#

Origin of the (geometric) object. If origin is set to None, Transformable.center will be returned.

Pivot must be set to a callable function without parameters.

transformable_obj = ...
transformable_obj.pivot = lambda: return Vector(1, 2)
print(transformable_obj.pivot)  # will print Vector(1, 2)
Access:

get/set

Returns:

Vector

rotated(theta: float, origin: VectorT | str | None = None) SelfT#

Return a rotated copy around origin with angle theta in math. positive direction (counterclockwise).

Args:

theta (float): rotation angle in rad origin (Optional[Union[linalg.VectorLike, str]], optional):

origin of rotation. If not set, (0,0) is used as origin. If origin == ‘center’, the Transformable.center of the object will be used. The same applies for the case that origin == ‘origin’ with the Transformable.origin property. Default to None.

Returns:

TransformableBase

scaled(fac: float, origin: VectorT | str | None = None) SelfT#

Return a scale object homogeneously about origin with factor s.

Args:

fac (float): rotation angle in rad origin (Optional[Union[linalg.VectorLike, str]], optional):

origin of rotation. If not set, (0,0) is used as origin. If origin == ‘center’, the Transformable.center of the object will be used. The same applies for the case that origin == ‘origin’ with the Transformable.origin property. Default to None.

Returns:

TransformableBase

transformed(transformations: _TransformationBuilder[VectorT]) SelfT#
Return a transformed object. the transformation can be build by the following functions:
  • translate()

  • rotate()

  • scale()

  • mirror()

E.g.

transformable_obj.transform(translate([1, 2]) | rotate(np.pi/3) | mirror([3,4])
Args:

transformations (_TransformationBuilder): transformation

Returns:

TransformableBase

translated(trans_vec: VectorT) SelfT#

Return a translated copy of the object by trans_vec.

Args:

trans_vec (VectorLike): translation vector

Returns:

TransformableBase

translated_to(pos: VectorT) SelfT#

Return a translated copy of the object so that self.pivot == pos

Args:

pos: new position of object

Returns:

TransformableBase

with_changed_description(new_descr: str) T#

Clones the object and set the description to new_descr.

Args:

new_descr: new description

Returns:

Describable